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Abstract
The relativistic generalization of the Kepler map describing diffusive excitation
of the relativistic hydrogen-like atom in a monochromatic field is derived. It
is shown that the trajectories which are regular in the non-relativistic case may
become chaotic in the relativistic case under the same conditions.

PACS numbers: 0545, 0365S, 0320, 3280R

Microwave excitation and ionization of highly excited hydrogen atoms has been the subject
of extensive theoretical (Jensen 1984, Casati et al 1987a, b, 1988, Delone et al 1983) as well
as experimental (Bayfield and Koch 1974, Jensen et al 1991, Koch and Van Leeuwen 1998)
investigation for the last three decades. A most interesting phenomenon in such an interaction
is the chaotization of motion of the Kepler electron under the influence of the monochromatic
field. Since 1974 when early experiments on chaotic ionization were performed (Bayfield and
Koch 1974) great progress has been made in the theoretical as well as the experimental study
of microwave ionization of the hydrogen atom. The first theoretical explanation of microwave
ionization was given by Delone et al (1978) who assumed that it is of diffusive character.
Resonance analysis based on the Chirikov criterion has shown itself to be a powerful tool,
allowing analytical estimation of the critical value of the external field at which ionization will
occur (Jensen 1984, Delone et al 1983).

Casati et al (1987a, b, 1988) introduced the so-called Kepler map. Approximating the
effect at perturbation by an instantaneous impulse that is applied once per orbital period of
motion, they replaced the Hamiltonian equation of motion with a mapping equation of motion
which they called the Kepler map. Such a map greatly facilitates numerical investigation of
the dynamics ionization process and even allows an analytical estimation of the threshold field
strengths for the onset of chaos, the diffusion coefficient of the electron in energy space and
other characteristics of the system (Casati et al 1987a, b, 1988, Kaulakis and Vilutis 1999).
Another important advantage of the Kepler map is the fact that it can be locally approximated
by the standard map (Casati et al 1988, Jensen et al 1981) which is a well studied model.
Moreover, quantization of this map allows one to treat the quantum effects in the chaotic
ionization of the hydrogen atom; by reducing its quantum dynamics to the quantum kicked
rotator model, one can observe the quantum localization phenomenon, which arises from the
fact that chaos is suppressed in the quantum chaos.
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In the present paper we will derive the relativistic generalization of the Kepler map
which describes diffusive excitation and ionization of the relativistic hydrogen-like atom in
a monochromatic field. We will derive the Kepler map for the one-dimensional relativistic
hydrogen-like atom in a monochromatic field. By a relativistic atom one means the atom, of
which the electron has a relativistic velocity due to the high charge of the atomic nucleus. Fast
growing interest in the physics and chemistry of the actinides and transactinides is stimulating
extensive study of heavy and super-heavy relativistic atoms. The study and synthesis of super-
heavy elements is becoming one of the current problems of modern physics (Pershina and
Fricke 1998, Holman 1999).

One of the main differences between relativistic and non-relativistic atoms, which leads to
the additional difficulty in the theoretical study of relativistic atoms, is the fact that the motion
of the atomic electrons in the relativistic case is described by equations of motion which are
more nonlinear than in the non-relativistic case. Separate from super-heavy atoms, such a one-
dimensional relativistic hydrogen-like atom is a convenient model for the study of dynamical
chaos in relativistic systems. Note that up to now investigation of chaos in dynamical systems
has mainly been limited by non-relativistic systems. However, the relativistic systems could
be more interesting for classical quantum chaology, since they are more nonlinear than their
non-relativistic counterparts (relativistic equations of motion can always be rewritten in a
form which coincides with that of the non-relativistic ones containing some effective energy
and effective potential which are expressed via an initial potential). The study of chaotic
relativistic dynamical systems could also be important when applied to real physical systems
from relativistic cosmology, particle physics, physics of super-heavy atoms, etc.

Presently there are few works in which the chaotic properties of classical relativistic
systems have been considered (Chernikov et al 1989, Luchinsky 1996, Kim Jung-Hoon and
Lee Hai-Woong 1996, Drake et al 1996). In Matrasulov (1999) chaotic ionization of the
relativistic hydrogen-like atom was considered on the basis of the resonance overlap criterion.
Recently (Matrasulov 2001), chaotization of supercritical atoms (with nuclear chargeZ > 137)
has also been studied. This paper represents further progress in the study of chaos in relativistic
atoms. Throughout the paper we use the relativistic system of units (me = c = h̄ = 1).

Consider a one-dimensional relativistic hydrogen-like atom with a nuclear charge Zα
(α = 1

137 ) interacting with a monochromatic field with frequency ω. The Hamiltonian of this
system has the form (in action-angle variables) (Matrasulov 1999)

H = n√
n2 + Z2α2

+ εx(n) cosωt (1)

where n is the action variable and x(n) is the coordinate of the relativistic electron in action-
angle variables. Following Casati et al (1988) we introduce the relativistic ‘eccentric anomaly’
ξ ,

t =
(
n2 + Z2α2

Zα

)3/2

(εξ − sin ξ)

x = (Zα)−1n
√
n2 + Z2α2(1 − ε−1 cos ξ)

θ = εξ − sin ξ

where

ε = n√
n2 + Z2α2

is the full energy of the electron.
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Then the Hamilton equations which have the forms

dn

dt
= −∂H

∂θ

dθ

dt
= ∂H

∂n
(2)

can be rewritten in terms of the new variables:

dn

dη
= −ε(n2 + Z2α2) sin ξ cosωt (3)

dξ

dη
= − Zα

(n2 + Z2α2)3/2
+

2n2 + Z2α2

√
n2 + Z2α2

ε cosωt(1 − ε−1 cos ξ) (4)

where

η = (n2 + Z2α2)3/2

Z2α2
(ξ + π). (5)

Our purpose is to evaluate the change in action between two subsequent passages at
the aphelion (ξ = π) integrating these equations approximately. Since we will perform
this evaluation at first order in ε, we can neglect ε in the second- and third-order equations.
Integrating the equations in the same way as in Casati et al (1988) we obtain

ωt = ω(n2 + Z2α2)3/2(εξ − sin ξ) + φ. (6)

The integration was started with η = 0 and ξ = −π . Therefore (Casati et al 1988)

φ = ω
(
t0 + π

n(n2 + Z2α2)

Z2α2

)
. (7)

Inserting equation (6) into equation (3) and integrating over ξ we obtain

�n = −ε (n
2 + Z2α2)5/2

Z2α2

∫ π

−π
cos{χ(εξ − sin ξ) + φ} sin ξ dξ

= −ε (n
2 + Z2α2)5/2

Z2α2
J ′
ν(χ) sin φ (8)

where

χ(n) = ω(n2 + Z2α2)3/2

Z2α2
ν = χε

J ′
ν(χ) = 1

2π

∫ π

−π
sin(ξ(εξ − sin ξ)) dξ

is the derivative of the Anger function (Casati et al 1988, Abramowitz and Stegun 1964).
Following Casati et al (1988) we introduce a variable N = (ε − 1)/ω, which describes,

as in the non-relativistic case, the number of absorbed photons. Using equation (8) for the
change of N , corresponding to the change of n we have

�N = �nZ2α2

ω(n2 − Z2α2)3/2

= 2π(n2 + Z2α2)ε

ω
J ′
ν(χ) sin φ = kA(χ) sin φ (9)

where k = 0.822πε(Zα)4/3ω−5/3.
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For the change of φ corresponding to the change of action n one has (from equation (7))

�φ = 2πZαωx

(1 − x2)3/2
(10)

where

x = ωN − 1 = n√
n2 + Z2α2

.

Following the standard procedure (see, e.g., Casati et al 1988, Kaulakis and Vilutis 1999)
we will seek the generating function G(N̄, φ) such that the map defined by

N = ∂G

∂φ
φ̄ = ∂G

∂N̄

coincides with equations (9) and (10) (in the first and zeroth order, respectively). The generating
function obeying these conditions has the form:

G = N̄φ + 2πZαω(1 − x2)1/2 + kA(χ̄) cosφ. (11)

It generates the following relativistic Kepler map:

N̄ = N + kA(χ̄) sin φ (12)

φ̄ = φ − 2πZαωx(1 − x2)−3/2 +
∂

∂N̄
[kA(χ̄)] cosφ. (13)

For χ � 1, A(χ) ∼ 1 (Casati et al 1988); therefore, in this case it can be rewritten as

N̄ = N + k sin φ (14)

φ̄ = φ − 2πZαω(1 + ωN)(−2ωN − ω2N2)−3/2. (15)

As can be seen from these equations, in the non-relativistic limit this map coincides with
the non-relativistic one. It is convenient to rewrite this map in terms of the dimensionless
variable E0 = ωNn2

0/Z
2α2:

Ē0 = E0 + k0 sin φ (16)

φ̄ = φ − 2πω0(−2E0)
−3/2f (E0) (17)

where

f (E0) =
(

1 +
Z2α2

n2
0

Ē0

)(
1 +

Z2α2

2n2
0

Ē0

)−3/2

. (18)

For f (E0) = 1 the non-relativistic limit is reached. Note that in the non-relativistic case
in such a form the Kepler map does not depend on the charge of the atomic nuclei, i.e. we have
the same phase-space portrait in the plane (E0, φ) for hydrogen and uranium atoms. In figure 1
the phase-space portrait for the non-relativistic Kepler map in the variables E0, φ is given. In
figure 2 the corresponding relativistic Kepler map is plotted with the same (as in figure 2)
values of ε0 and ω0 (for n0 = 6, Z = 92). As can be seen from these figures, in the relativistic
case the number of chaotic trajectories is more than in the corresponding non-relativistic case.

As is well known (Casati et al 1988, Jensen et al 1991), the Kepler map can be linearized
about a scaled energy n0/2ω0 and rewritten in the form of a standard map. Linearizing
equation (15) in the same way as in the non-relativistic case we have the following (relativistic)
standard map:

N̄ = N + k sin φ (19)

φ̄ = φ + TN (20)
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Figure 1. The phase-space portrait for the non-relativistic Kepler map in the variables E0, φ

(ε0 = 0.03, ω0 = 3.5).

Figure 2. Relativistic Kepler map with the same (as in figure 1) values of ε0 and ω0 (for n0 = 6,
Z = 92).

where

T = Tnonrel

(
1 − Z2α2

2n2
0

)(
1 − Z2α2

4n2
0

)−3/2[
1 − Z2α2

2n2
0

1 − Z2α2/2n2
0

3
(
1 + Z2α2/2n2

0

)(
2 + Z2α2/2n2

0

)
]
.
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Tnonrel = 6πω2n2
0 is the corresponding coefficient for the non-relativistic case. The onset of

stochasticity occurs when kT becomes larger than 1. From this condition one can estimate the
critical value of the scaled field strength (ε0 = εn4):

ε0 ≈ εnonrel

(
1 − Z2α2

2n2
0

)(
1 − Z2α2

4n2
0

)−3/2[
1 − Z2α2

2n2
0

1 − Z2α2/2n2
0

3
(
1 + Z2α2/2n2

0

)(
2 + Z2α2/2n2

0

)
]

where εnonrel = 1/49ε0ω
1/3 is the scaled field strength for the non-relativistic case.

Thus we have derived the relativistic generalization of the Kepler map describing the
diffusion process of the periodically driven relativistic Kepler electron in energy space. As
shown in figures 1 and 2 trajectories which are regular in the non-relativistic case can be chaotic
in the relativistic case (with the same parameters as in the non-relativistic case). This can be
explained by the fact that the relativistic Hamiltonian written in action-angle variables has a
more complicated (nonlinear) form than the non-relativistic one. The respect in which this
paper is an advance on previous ones (Matrasulov 1999, 2001) is that it raises the possibility
of treating the chaotization process by plotting trajectories in phase space. In addition to this
the linearized form of the Kepler map allows one to estimate the threshold field at which
chaotization will occur. Another peculiarity of the obtained map is the fact that on the (E0, φ)
plane it depends on the charge of atomic nuclei; the corresponding non-relativistic Kepler
map does not depend on the charge and gives the same phase-space portrait for hydrogen and
uranium atoms. As is well known (Casati et al 1988, Jensen et al 1991, Leopold and Richards
1990), quantization of chaotic excitation and ionization of the hydrogen atom can be done
with the classical Kepler map. Therefore, quantization of the relativistic Kepler map leads to
a simplified quantal description of the chaotic ionization for the relativistic atom.

References

Abramowitz M A and Stegun I A 1964 Handbook of Mathematical Functions (NBS) (Washington, DC: US Govt
Printing Office)

Bayfield J E and Koch P M 1974 Phys. Rev. Lett. 33 258
Casati G et al 1987a Phys. Rev. A 36 3501
——1987b Phys. Rep. 154 77
——1988 IEEE J. Quantum Electron. 24 1420
——1990 Physica A 163 205
Chernikov A A et al 1989 Phys. Rev. E A 40 4072
Delone N B et al 1978 JETP 75 445
——1983 Usp. Fiz. Nauk. 140 335
Drake S P et al 1996 Phys. Rev. E 53 1351
Holmann S 1999 GSI Preprint 99-02
Jensen R V 1984 Phys. Rev. A 30 386
Jensen R V et al 1991 Phys. Rep. 201 1
Koch P M and Van Leeuwen K A H 1998 Phys. Rep. 255 289
Kaulakis B and Vilutis G 1999 Phys. Scr. 59 251
Kim Jung-Hoon and Lee Hai-Woong 1996 Phys. Rev. E 53 4242
Leopold L C and Percival I C 1978 Phys. Rev. Lett. 41 944
Leopold L C and Richards D 1990 J. Phys. A: Math. Gen. 23 2911
Luchinsky D G et al 1996 Phys. Rev. E 53 no 4B
Matrasulov D U 1999 Phys. Rev. A 60 700
——2001 Phys. At. Nucl. 64 68
Pershina V and Fricke B 1999 GSI Preprint 98-26


